Background

In a quality statistical data analysis the initial step has to be exploratory. Exploratory data analysis begins with the univariate exploratory analyis - examining the variable one at a time. Next comes bivariate analysis followed by multivariate analyis. SmartEDA package helps in getting the complete exploratory data analysis just by running the function instead of writing lengthy r code.

Functionalities of SmartEDA

The SmartEDA R package has four unique functionalities as

• Descriptive statistics
• Data visualisation
• Custom table
• HTML EDA report

Journal of Open Source Software Article

An article describing SmartEDA pacakge for exploratory data analysis approach has been published in arxiv and currently it is under review at The Journal of Open Source Software. Please cite the paper if you use SmartEDA in your work!

Installation

The package can be installed directly from CRAN.

install.packages("SmartEDA")

You can install the latest development verion of the SmartEDA from github with:

install.packages("devtools")
devtools::install_github("daya6489/SmartEDA",ref = "develop")

Example

Data

In this vignette, we will be using a simulated data set containing sales of child car seats at 400 different stores.

Data Source ISLR package.

Install the package “ISLR” to get the example data set.

install.packages("ISLR")
library("ISLR")
install.packages("SmartEDA")
library("SmartEDA")
## Load sample dataset from ISLR pacakge
Carseats= ISLR::Carseats

Overview of the data

Understanding the dimensions of the dataset, variable names, overall missing summary and data types of each variables

## overview of the data;
ExpData(data=Carseats,type=1)
## structure of the data
ExpData(data=Carseats,type=2)

Summary of numerical variables

To summarise the numeric variables, you can use following r codes from this pacakge

## Summary statistics by – overall
ExpNumStat(Carseats,by="A",gp=NULL,Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2)
## Summary statistics by – overall with correlation
ExpNumStat(Carseats,by="A",gp="Price",Qnt=seq(0,1,0.1),MesofShape=1,Outlier=TRUE,round=2)
## Summary statistics by – category
ExpNumStat(Carseats,by="GA",gp="Urban",Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2)

Graphical representation of all numeric features

## Generate Boxplot by category
ExpNumViz(mtcars,target="gear",type=2,nlim=25,fname = file.path(tempdir(),"Mtcars2"),Page = c(2,2))
## Generate Density plot
ExpNumViz(mtcars,target=NULL,type=3,nlim=25,fname = file.path(tempdir(),"Mtcars3"),Page = c(2,2))
## Generate Scatter plot
ExpNumViz(mtcars,target="carb",type=3,nlim=25,fname = file.path(tempdir(),"Mtcars4"),Page = c(2,2))
ExpNumViz(mtcars,target="am",scatter=TRUE)

Summary of Categorical variables

## Frequency or custom tables for categorical variables
ExpCTable(Carseats,Target=NULL,margin=1,clim=10,nlim=5,round=2,bin=NULL,per=T)
ExpCTable(Carseats,Target="Price",margin=1,clim=10,nlim=NULL,round=2,bin=4,per=F)
ExpCTable(Carseats,Target="Urban",margin=1,clim=10,nlim=NULL,round=2,bin=NULL,per=F)

## Summary statistics of categorical variables
ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,Pclass="Yes")
## Inforamtion value and Odds value
ExpCatStat(Carseats,Target="Urban",result = "IV",clim=10,nlim=5,Pclass="Yes")

Graphical representation of all categorical variables

## column chart
ExpCatViz(Carseats,target="Urban",fname=NULL,clim=10,col=NULL,margin=2,Page = c(2,1),sample=2)
## Stacked bar graph
ExpCatViz(Carseats,target="Urban",fname=NULL,clim=10,col=NULL,margin=2,Page = c(2,1),sample=2)
## Variable importance graph using information values
ExpCatStat(Carseats,Target="Urban",result="Stat",Pclass="Yes",plot=TURE,top=20,Round=2)

Variable importance based on Information value

ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,bins=10,Pclass="Yes",plot=TRUE,top=10,Round=2)

Create HTML EDA report

Create a exploratory data analysis report in HTML format

ExpReport(Carseats,Target="Urban",label=NULL,theme="Default",op_file="test.html",op_dir=getwd(),sc=2,sn=2,Rc="Yes")

Quantile-quantile plot for numeric variables

ExpOutQQ(CData,nlim=10,fname=NULL,Page=c(2,2),sample=4)

Parallel Co-ordinate plots

## Defualt ExpParcoord funciton
## With Stratified rows and selected columns only
ExpParcoord(CData,Group="ShelveLoc",Stsize=c(10,15,20),Nvar=c("Price","Income"),Cvar=c("Urban","US"))
## Without stratification
ExpParcoord(CData,Group="ShelveLoc",Nvar=c("Price","Income"),Cvar=c("Urban","US"),scale=NULL)
## Scale change
ExpParcoord(CData,Group="US",Nvar=c("Price","Income"),Cvar=c("ShelveLoc"),scale="std")
## Selected numeric variables
## Selected categorical variables
ExpParcoord(CData,Group="US",Stsize=c(15,50),Cvar=c("ShelveLoc","Urban"))

Exploratory analysis - Custom tables, summary statistics

Descriptive summary on all input variables for each level/combination of group variable. Also while running the analysis we can filter row/cases of the data.

ExpCustomStat(Carseats,Cvar=c("US","Urban","ShelveLoc"),gpby=FALSE)
ExpCustomStat(Carseats,Cvar=c("US","Urban"),gpby=TRUE,filt=NULL)
ExpCustomStat(Carseats,Cvar=c("US","Urban","ShelveLoc"),gpby=TRUE,filt=NULL)
ExpCustomStat(Carseats,Cvar=c("US","Urban"),gpby=TRUE,filt="Population>150")
ExpCustomStat(Carseats,Cvar=c("US","ShelveLoc"),gpby=TRUE,filt="Urban=='Yes' & Population>150")
ExpCustomStat(Carseats,Nvar=c("Population","Sales","CompPrice","Income"),stat = c('Count','mean','sum','var','min','max'))
ExpCustomStat(Carseats,Nvar=c("Population","Sales","CompPrice","Income"),stat = c('min','p0.25','median','p0.75','max'))
ExpCustomStat(Carseats,Nvar=c("Population","Sales","CompPrice","Income"),stat = c('Count','mean','sum','var'),filt="Urban=='Yes'")
ExpCustomStat(Carseats,Nvar=c("Population","Sales","CompPrice","Income"),stat = c('Count','mean','sum'),filt="Urban=='Yes' & Population>150")
ExpCustomStat(data_sam,Nvar=c("Population","Sales","CompPrice","Income"),stat = c('Count','mean','sum','min'),filt="All %ni% c(999,-9)")
ExpCustomStat(Carseats,Nvar=c("Population","Sales","CompPrice","Education","Income"),stat = c('Count','mean','sum','var','sd','IQR','median'),filt=c("ShelveLoc=='Good'^Urban=='Yes'^Price>=150^ ^US=='Yes'"))
ExpCustomStat(Carseats,Cvar = c("Urban","ShelveLoc"), Nvar=c("Population","Sales"), stat = c('Count','Prop','mean','min','P0.25','median','p0.75','max'),gpby=FALSE)
ExpCustomStat(Carseats,Cvar = c("Urban","US","ShelveLoc"), Nvar=c("CompPrice","Income"), stat = c('Count','Prop','mean','sum','PS','min','max','IQR','sd'), gpby = TRUE)
ExpCustomStat(Carseats,Cvar = c("Urban","US","ShelveLoc"), Nvar=c("CompPrice","Income"), stat = c('Count','Prop','mean','sum','PS','P0.25','median','p0.75'), gpby = TRUE,filt="Urban=='Yes'")
ExpCustomStat(data_sam,Cvar = c("Urban","US","ShelveLoc"), Nvar=c("Sales","CompPrice","Income"), stat = c('Count','Prop','mean','sum','PS'), gpby = TRUE,filt="All %ni% c(888,999)")
ExpCustomStat(Carseats,Cvar = c("Urban","US"), Nvar=c("Population","Sales","CompPrice"), stat = c('Count','Prop','mean','sum','var','min','max'), filt=c("ShelveLoc=='Good'^Urban=='Yes'^Price>=150"))