InteractionPoweR: Power Analyses for Interaction Effects in Cross-Sectional Regressions

Power analysis for regression models which test the interaction of two or three independent variables on a single dependent variable. Includes options for correlated interacting variables and specifying variable reliability. Two-way interactions can include continuous, binary, or ordinal variables. Power analyses can be done either analytically or via simulation. Includes tools for simulating single data sets and visualizing power analysis results. The primary functions are power_interaction_r2() and power_interaction() for two-way interactions, and power_interaction_3way_r2() for three-way interactions. Please cite as: Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM (2023). "Tutorial: Power analyses for interaction effects in cross-sectional regressions." <doi:10.1177/25152459231187531>.

Version: 0.2.2
Depends: R (≥ 3.5.0)
Imports: dplyr, parallel, doParallel, foreach, ggplot2, polynom, chngpt, rlang, tidyr, stats, ggbeeswarm, Matrix
Published: 2024-07-09
DOI: 10.32614/CRAN.package.InteractionPoweR
Author: David Baranger ORCID iD [aut, cre] (, Brandon Goldstein [ctb], Megan Finsaas [ctb], Thomas Olino [ctb], Colin Vize [ctb], Don Lynam [ctb]
Maintainer: David Baranger <dbaranger at>
License: GPL (≥ 3)
NeedsCompilation: no
Citation: InteractionPoweR citation info
Materials: README NEWS
CRAN checks: InteractionPoweR results


Reference manual: InteractionPoweR.pdf


Package source: InteractionPoweR_0.2.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): InteractionPoweR_0.2.2.tgz, r-oldrel (arm64): InteractionPoweR_0.2.2.tgz, r-release (x86_64): InteractionPoweR_0.2.2.tgz, r-oldrel (x86_64): InteractionPoweR_0.2.2.tgz
Old sources: InteractionPoweR archive


Please use the canonical form to link to this page.