MPS: Estimating Through the Maximum Product Spacing Approach

Developed for computing the probability density function, computing the cumulative distribution function, computing the quantile function, random generation, drawing q-q plot, and estimating the parameters of 24 G-family of statistical distributions via the maximum product spacing approach introduced in <>. The set of families contains: beta G distribution, beta exponential G distribution, beta extended G distribution, exponentiated G distribution, exponentiated exponential Poisson G distribution, exponentiated generalized G distribution, exponentiated Kumaraswamy G distribution, gamma type I G distribution, gamma type II G distribution, gamma uniform G distribution, gamma-X generated of log-logistic family of G distribution, gamma-X family of modified beta exponential G distribution, geometric exponential Poisson G distribution, generalized beta G distribution, generalized transmuted G distribution, Kumaraswamy G distribution, log gamma type I G distribution, log gamma type II G distribution, Marshall Olkin G distribution, Marshall Olkin Kumaraswamy G distribution, modified beta G distribution, odd log-logistic G distribution, truncated-exponential skew-symmetric G distribution, and Weibull G distribution.

Version: 2.3.1
Depends: R (≥ 3.1)
Published: 2019-10-04
DOI: 10.32614/CRAN.package.MPS
Author: Mahdi Teimouri and Saralees Nadarajah
Maintainer: Mahdi Teimouri <teimouri at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
In views: Distributions
CRAN checks: MPS results


Reference manual: MPS.pdf


Package source: MPS_2.3.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): MPS_2.3.1.tgz, r-oldrel (arm64): MPS_2.3.1.tgz, r-release (x86_64): MPS_2.3.1.tgz, r-oldrel (x86_64): MPS_2.3.1.tgz
Old sources: MPS archive


Please use the canonical form to link to this page.