mcca: Multi-Category Classification Accuracy

It contains six robust diagnostic accuracy methods to evaluate three or four category classifiers. Hypervolume Under Manifold (HUM), described in the paper: Jialiang Li (2008) <doi:10.1093/biostatistics/kxm050>. Jialiang Li (2014) <doi:10.3109/1354750X.2013.868516>. Correct Classification Percentage (CCP), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), R-Squared Value (RSQ), described in the paper: Jialiang Li (2013) <doi:10.1093/biostatistics/kxs047>. Polytomous Discrimination Index (PDI), described in the paper: Van Calster B (2012) <doi:10.1007/s10654-012-9733-3>. Jialiang Li (2017) <doi:10.1177/0962280217692830>.

Version: 0.1.0
Imports: nnet, rpart, e1071, MASS, stats
Published: 2017-11-20
Author: Gao Ming, Jialiang Li
Maintainer: gaoming <gaoming96 at>
License: GPL-2 | GPL-3 [expanded from: GPL]
NeedsCompilation: no
CRAN checks: mcca results


Reference manual: mcca.pdf
Package source: mcca_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: mcca_0.1.0.tgz
OS X Mavericks binaries: r-oldrel: mcca_0.1.0.tgz


Please use the canonical form to link to this page.