opticut: Likelihood Based Optimal Partitioning and Indicator Species Analysis

Likelihood based optimal partitioning and indicator species analysis. Finding the best binary partition for each species based on model selection, with the possibility to take into account modifying/confounding variables as described in Kemencei et al. (2014) <doi:10.1556/ComEc.15.2014.2.6>. The package implements binary and multi-level response models, various measures of uncertainty, Lorenz-curve based thresholding, with native support for parallel computations.

Version: 0.1-3
Depends: R (≥ 3.1.0), pbapply (≥ 1.3-0)
Imports: MASS, pscl, betareg, ResourceSelection (≥ 0.3-2), parallel, mefa4
Published: 2024-05-21
DOI: 10.32614/CRAN.package.opticut
Author: Peter Solymos [cre, aut] (<https://orcid.org/0000-0001-7337-1740>), Ermias T. Azeria [ctb]
Maintainer: Peter Solymos <psolymos at gmail.com>
BugReports: https://github.com/psolymos/opticut/issues
License: GPL-2
URL: https://github.com/psolymos/opticut
NeedsCompilation: no
CRAN checks: opticut results


Reference manual: opticut.pdf


Package source: opticut_0.1-3.tar.gz
Windows binaries: r-devel: opticut_0.1-3.zip, r-release: opticut_0.1-3.zip, r-oldrel: opticut_0.1-3.zip
macOS binaries: r-release (arm64): opticut_0.1-3.tgz, r-oldrel (arm64): opticut_0.1-3.tgz, r-release (x86_64): opticut_0.1-3.tgz, r-oldrel (x86_64): opticut_0.1-3.tgz
Old sources: opticut archive


Please use the canonical form https://CRAN.R-project.org/package=opticut to link to this page.