Package ‘sanic’

September 22, 2020

Type Package

Title Solving Ax =b Nimbly in C++

Version 0.0.1

Date 2020-09-04

Author Nikolas Kuschnig [aut, cre] (<https://orcid.org/0000-0002-6642-2543>)
Maintainer Nikolas Kuschnig <nikolas.kuschnig@wu.ac.at>

Description Routines for solving large systems of linear equations in R.
Direct and iterative solvers from the Eigen C++ library are made available.
Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate
Gradient, BICGSTAB). Both dense and sparse problems are supported.

URL https://github.com/nk@27/sanic

BugReports https://github.com/nk@27/sanic/issues
Depends R (>=3.3.0)

Imports Rcpp (>= 1.0.5), Matrix, methods

License GPL-3

Encoding UTF-8

LinkingTo Rcpp, ReppEigen

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-09-22 08:40:03 UTC

R topics documented:

SOIVE_CZ . . o o o e e e
solve_chol e
Sparsify . .. e e e e e e

Index

https://github.com/nk027/sanic
https://github.com/nk027/sanic/issues

2 solve_cg
sanic Solving Ax = b Nimbly in C++
Description
Routines for solving large systems of linear equations in R. Direct and iterative solvers from the
Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace
methods (Conjugate Gradient, BICGSTAB). Both dense and sparse problems are supported.
solve_cg Solve a System of Equations using Iterative Methods
Description
Function to use Conjugate Gradient (CG) methods to solver systems of equations.
Usage
solve_cg(
a ’
b,
X0,
type = c("BiCGSTAB", "LSCG", "CG"),
tol,
iter,
verbose = FALSE
)
Arguments
a Square numeric matrix with the coefficients of the linear system. Both dense
and sparse matrices are supported (see sparsify).
b Numeric vector or matrix at the right-hand side of the linear system. If missing,
’b’ is set to an identity matrix and ’a’ is inverted.
X0 Numeric vector or matrix with an initial guess. Must be of the same dimension
as’b’.
type Character scalar. Whether to use the BICGSTAB, least squares CG or classic
CG method.
tol Numeric scalar with the desired tolerance. Defaults to the machine precision.
iter Integer scalar with the maximum number of iterations. Defaults to the theoreti-
cal maximum, i.e. the number of columns in ’a’.
verbose Logical scalar. Whether to print iterations and tolerance.

solve_chol 3

Value

Solves for z and returns a numeric matrix with the results.

Examples
Solve via least squares or bi-conjugate gradient methods
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
The matrix A should be of class 'dgCMatrix' (otherwise it is converted)
A <- sparsify(A)
X <= rnorm(3)
b <- A %% x

x_bi <- solve_cg(A, b)
x_ls <- solve_cg(A, b, type = "LS")

Solve via conjugate gradient for symmetric matrices
AA <= A %*% A

b <- AA %*% x

x_cg <- solve_cg(AA, b, type = "CG")

solve_chol Solve a System of Equations Using Direct Methods

Description

Functions to access specific direct solvers for systems of equations.
Usage

solve_chol(a, b)

solve_lu(a, b)

solve_qr(a, b)

Arguments
a Square numeric matrix with the coefficients of the linear system. Both dense
and sparse matrices are supported (see sparsify).
b Numeric vector or matrix at the right-hand side of the linear system. If missing,
’b’ is set to an identity matrix and ’a’ is inverted.
Value

Solves for x and returns a numeric matrix with the results.

4 sparsify

Examples

Solve via LU and QR for general matrices
A <- matrix(rnorm(9), nrow = 3, ncol = 3)
x <= rnorm(3)

b <= A %*% x

x_lu <- solve_lu(A, b)
x_qr <- solve_qgr(A, b)

Solve via Cholesky for symmetric matrices
AA <- crossprod(A)
b <- AA %*% x

x_chol <- solve_chol(AA, b)

Sparse methods are available for the 'dgCMatrix' class from Matrix
x_slu <- solve_lu(sparsify(A), b)

sparsify Transform a Matrix to Be Sparse.

Description

Concise function to transform dense to sparse matrices of class dgCMatrix (see sparseMatrix).

Usage
sparsify(x)

Arguments

X Numeric matrix to transform to a sparse *dgCMatrix’.

Value

Returns ’x’ as dgCMatrix.

Examples

sparsify(matrix(rnorm(9L), 3L))

Index

sanic, 2

solve_cg, 2
solve_chol, 3

solve_lu (solve_chol), 3
solve_qr (solve_chol), 3
sparseMatrix, 4
sparsify, 2, 3,4

	sanic
	solve_cg
	solve_chol
	sparsify
	Index

